Sequential Decision-Making Under Uncertainty Using Hybrid Probability-Possibility Functions
نویسندگان
چکیده
Probabilistic and possibilistic models of sequential decision problems are known to possess good behavioral algorithmic properties. In this paper, the range under uncertainty that dynamically consistent, consequentialist allow for tree reduction is enlarged by considering a representation both probabilistic possibilistic. The corresponding utility functional expected highly likely states, an optimistic or pessimistic possibility-based criterion unlikely states.
منابع مشابه
Collective Multiagent Sequential Decision Making Under Uncertainty
Multiagent sequential decision making has seen rapid progress with formal models such as decentralized MDPs and POMDPs. However, scalability to large multiagent systems and applicability to real world problems remain limited. To address these challenges, we study multiagent planning problems where the collective behavior of a population of agents affects the joint-reward and environment dynamic...
متن کاملRank-Dependent Probability Weighting in Sequential Decision Problems under Uncertainty
This paper is devoted to the computation of optimal strategies in automated sequential decision problems. We consider here problems where one seeks a strategy which is optimal for rank dependent utility (RDU). RDU generalizes von Neumann and Morgenstern’s expected utility (by probability weighting) to encompass rational decision behaviors that EU cannot accomodate. The induced algorithmic probl...
متن کاملSequential decision making in repeated coalition formation under uncertainty
The problem of coalition formation when agents are uncertain about the types or capabilities of their potential partners is a critical one. In [3] a Bayesian reinforcement learning framework is developed for this problem when coalitions are formed (and tasks undertaken) repeatedly: not only does the model allow agents to refine their beliefs about the types of others, but uses value of informat...
متن کاملPOMDPs.jl: A Framework for Sequential Decision Making under Uncertainty
POMDPs.jl is an open-source framework for solving Markov decision processes (MDPs) and partially observable MDPs (POMDPs). POMDPs.jl allows users to specify sequential decision making problems with minimal effort without sacrificing the expressive nature of POMDPs, making this framework viable for both educational and research purposes. It is written in the Julia language to allow flexible prot...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Lecture Notes in Computer Science
سال: 2021
ISSN: ['1611-3349', '0302-9743']
DOI: https://doi.org/10.1007/978-3-030-85529-1_5